3 resultados para Predator

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global declines in amphibians likely have multiple causes, including widespread pesticide use. Our knowledge of pesticide effects on amphibians is largely limited to short-term (4-d) toxicity tests conducted under highly artificial conditions to determine lethal concentrations (LC50). We found that if we used slightly longer exposure times (10–16 d), low concentrations of the pesticide carbaryl (3–4% of LC504-d) killed 10–60% of gray treefrog (Hyla versicolor) tadpoles. If predatory cues also were present, the pesticide became 2–4 times more lethal, killing 60–98% of tadpoles. Thus, under more realistic conditions of increased exposure times and predatory stress, current application rates for carbaryl can potentially devastate gray treefrog populations. Further, because predator-induced stress is ubiquitous in animals and carbaryl's mode of action is common to many pesticides, these negative impacts may be widespread in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many prey modify traits in response to predation risk and this modification of traits can influence the prey's resource acquisition rate. A predator thus can have a “nonlethal” impact on prey that can lead to indirect effects on other community members. Such indirect interactions are termed trait-mediated indirect interactions because they arise from a predator's influence on prey traits, rather than prey density. Because such nonlethal predator effects are immediate, can influence the entire prey population, and can occur over the entire prey lifetime, we argue that nonlethal predator effects are likely to contribute strongly to the net indirect effects of predators (i.e., nonlethal effects may be comparable in magnitude to those resulting from killing prey). This prediction was supported by an experiment in which the indirect effects of a larval dragonfly (Anax sp.) predator on large bullfrog tadpoles (Rana catesbeiana), through nonlethal effects on competing small bullfrog tadpoles, were large relative to indirect effects caused by density reduction of the small tadpoles (the lethal effect). Treatments in which lethal and nonlethal effects of Anax were manipulated independently indicated that this result was robust for a large range of different combinations of lethal and nonlethal effects. Because many, if not most, prey modify traits in response to predators, our results suggest that the magnitude of interaction coefficients between two species may often be dynamically related to changes in other community members, and that many indirect effects previously attributed to the lethal effects of predators may instead be due to shifts in traits of surviving prey.